Image Processing Methods for Computer-aided Interpretation of Microscopic Images
نویسندگان
چکیده
IMAGE PROCESSING METHODS FOR COMPUTER-AIDED INTERPRETATION OF MICROSCOPIC IMAGES Musa Furkan Keskin M.S. in Electrical and Electronics Engineering Supervisor: Prof. Dr. A. Enis Çetin September, 2012 Image processing algorithms for automated analysis of microscopic images have become increasingly popular in the last decade with the remarkable growth in computational power. The advent of high-throughput scanning devices allows for computer-assisted evaluation of microscopic images, resulting in a quick and unbiased image interpretation that will facilitate the clinical decision-making process. In this thesis, new methods are proposed to provide solution to two image analysis problems in biology and histopathology. The first problem is the classification of human carcinoma cell line images. Cancer cell lines are widely used for research purposes in laboratories all over the world. In molecular biology studies, researchers deal with a large number of specimens whose identity have to be checked at various points in time. A novel computerized method is presented for cancer cell line image classification. Microscopic images containing irregular carcinoma cell patterns are represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance descriptor utilizing the dual-tree complex wavelet transform (DTCWT) coefficients as pixel features is computed. A Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel is employed for final classification. For 14 different classes, we achieve an overall accuracy of 98%, which outperforms the classical covariance based methods. Histopathological image analysis problem is related to the grading of follicular lymphoma (FL) disease. FL is one of the commonly encountered cancer types in the lymph system. FL grading is based on histological examination of hematoxilin and eosin (H&E) stained tissue sections by pathologists who make clinical decisions by manually counting the malignant centroblast (CB) cells. This grading
منابع مشابه
Two New Methods of Boundary Correction for Classifying Textural Images
With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...
متن کاملAn Image Analysis-Based Methodology for Chromite Exploration through Opto-Geometric Parameters; a Case Study in Faryab Area, SE of Iran
Traditional methods of chromite exploration are mostly based on geophysical techniques and drilling operations. They are expensive and time-consuming. Furthermore, they suffer from several shortcomings such as lack of sufficient geophysical density contrast. In order to overcome these drawbacks, the current research work is carried out to introduce a novel, automatic and opto-geometric image an...
متن کاملImprovement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images
Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...
متن کاملEarly Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods
Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...
متن کاملA New Method for Detecting Sperms in Microscopy Images: Combination of Zernike Moments and Spatial Processing
Introduction: In recent years, modern microscopic imaging in parallel with digital image processing techniques, have facilitated computerized semen analysis. However, in these methods, distinguishing sperms from other semen particles can be hampered by low contrast of microscopic images and the possibility of neighboring sperms touching each other. Materials and Methods: This article introduced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012